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Abstract Nonionic surfactants such as the Brij® series are
important in the preparation of transdermal drug nanodelivery
products using nanoemulsions because of their low toxicity
and low irritancy. Here, Monte Carlo (MC) simulation was
used to examine the physical behavior of the model determin-
istic system by using sampling procedures. Metropolis MC
simulations were run on three mixtures of two different non-
ionic surfactants, Brij92 and Brij96, with different composi-
tions in aqueous solution. The system was simulated in the
canonical ensemble with constant temperature, volume and
number of molecules. Hence, the acceptance ratio for single
atom moves of the mixed surfactants increased as the concen-
tration of surfactants increased from 0.494 to 0.591. The
lowest total energy for the mixed surfactant systems was
−99,039 kcal mol−1 due to the interaction between all mole-
cules in the system simulated. The physicochemical properties
of models such as the radius of gyration and radial distribution
function, were also determined. These observations indicate
that the behavior and physicochemical of mixed surfactant
and PKOEs nanoemulsion systems were described adequately
during the simulation.

Keywords Brij surfactants . MetropolisMonte Carlo
simulation .Micelles . Self-assembly . Nonionic surfactants

Introduction

Surfactants show many practical applications, for example, in
the management of soil water repellency [1], in the petroleum
industry [2], food industry, and in cosmetics, pharmaceuticals,
and agrochemicals [3]. They are usually classified into four
main groups: anionic, nonionic, cationic, and amphoteric (or
zwitterionic) molecules. An amphiphilic molecule contains
both hydrophobic (the nonpolar tail) and hydrophilic (the
polar head) moieties. Surfactants can aggregate in micelles
and form liquid crystals in aqueous solution, depending on the
temperature and total concentration, because of the
lypophilicity of their hydrocarbon tails, which are segregated
by water. Surfactant micellization is a relatively well-studied
topic. Various surfactants have been investigated through
experimental techniques such as light scattering, fluorescence
quenching, calorimetry, potentiometry, etc., to determine the
structure and micellization properties of the surfactants.

Various theoretical procedures have been developed to
understand the physicochemical properties of the micelles
from examining the molecular composition of the surfactants.
The two main groups of computational simulation techniques
are traditional molecular dynamics (MD) and Monte Carlo
(MC) with several hybrid methods that combine features from
both techniques, e.g., coarse-grained molecular dynamics
(CG-MD). Traditional MD produces an atomistic description
of molecular properties [4–6] but requires, for large systems, a
lot of computational time to equilibrate the model system, and
can be restricted to very small time scales. Therefore, the
stochastic numerical methods such as MC can be a good
alternative, as it investigates the behavior of deterministic
systems based on sampling procedures. In this case, the
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system configurations are selected randomly not following the
Newton’s equation of motions [7].

In general, the MC techniques applied were based mostly
on lattice models in which a surfactant molecule was repre-
sented as a chain of chemical groups occupying certain grid
sites on a 2D or 3D lattice. However, it was shown that
surfactant self-assembly could be achieved by MC simula-
tions even without having to resort any pre-assembled micel-
lar structure or shape [8, 9]. Metropolis MC simulation in the
canonical ensemble of 3D lattice model was used to study the
aggregation of surfactants in binary mixtures of water and
ionic surfactant. The simulations for each condition were
started at athermal conditions and, after equilibrium was
attained at each step, the interaction energy was increased in
small steps until the desired interaction energy was reached. A
systematic study on the effects of the various parameters on
the micellization properties can also be performed due to the
thermodynamic indication of the aggregates and disaggre-
gates of the surfactant molecules at certain concentrations
[10].

Extensive MC simulations of surfactants have been carried
out in recent years. For example, a lattice model of a
surfactant-solvent system was built by Rodriguez-
Guadarrama and coworkers [11] to predict the thermodynamic
properties of the self-association of nonionic surfactant mole-
cules. Lattice models exhibit useful features of any character-
istic properties and behaviors of self-associating systems, such
as the temperature, and solvent quality, and had good agree-
ment between theory and experiment [11]. The behavior of the
model binary surfactant mixtures consisting of two similar
surfactants was investigated by Poorgholami-Bejarpasi and
colleagues [12] to analyze the head–head and tail–tail interac-
tions among the mixed system while observing the distribu-
tion of aggregates. In this case, the authors calculated the
activity coefficients of each surfactant species and compared
with the regular solution theory, demonstrating that the large
observed discrepancy is due to the nonrandom mixing of
surfactants.

The present study focused on model nonionic mixed sur-
factants of the Brij® series at different concentrations in order
to determine the best composition to be used in a
nanoemulsion mixture. These nonionic surfactants are impor-
tant in transdermal drug nanodelivery products using
nanoemulsions formulations because of their low toxicity
and irritancy [13]. It has been shown that the hydrophilic-
lipophilic balance (HLB) value of the surfactant, and the size
and shape of both the alkyl chain and the polar group, influ-
ence the absorption ability of drug release into the body [13,
14]. Here, MC simulations were used to study the two specific
nonionic surfactants, Brij92 and Brij96, with different com-
positions (10 %, 60 % and 80 %) in water. In this case,TIP3
was chosen to represent the water molecules in the simulation.
According to Kincaid and colleagues [15] and also Hu and

colleagues [7], the present study explores a situation in which
the model mixed surfactant molecule may at least result in an
acceptance ratio rate of 30% for a systemwith smooth energy,
in contrast to the assumption of earlier practitioners, who
found that 50 % was the best.

Figure 1 shows the molecular structure of both molecules.
The structure of Brij92 contains ethylene oxide (EO) with a
chain length of 2 and HLB value of 4.9, while Brij96 has a
chain length of 10 and HLB value of 12.4. Their hydrophobic
parts consist of oleyl portions. The Brij series could be very
effective promoters of skin permeation, for example, in ibu-
profen delivery [13], and could increase the penetration of the
drug via both lipophilic and hydrophilic molecular mecha-
nisms. Molecules in the Brij series interact with the polar head
groups of lipids and modify the hydrogen bonding and ionic
forces in addition to increasing the water content of proteins in
the stratum corneum by hydrating lipid spheres [13, 14].

The paper is organized as follows. Firstly, in section 2, the
Computational methods employed in the study were
discussed. This includes the calculations on determination of
excess chemical potential and also the prediction of the num-
ber of each molecule involved in the system at different
compositions. This is followed in Results and discussion by
an extensive discussion of the results, such as the energy
obtained during the simulation, acceptance ratio, radial distri-
bution function and other physicochemical properties. A brief
summary and some concluding remarks follow in the
Conclusions.

Computational methods

All Metropolis MC simulations and energy minimizations
were performed using CHARMM software package version
35b5 [16]. The surfactant structures were changed into
CHARMM-formatted files from the original Protein Data
Bank files using the MMTSB tool set [17] and the molecules

Fig. 1 The molecular structure of a Brij 92 and b Brij 96
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were then optimized geometrically using winGAMESS [18]
at the RHF/6-31G level of theory. Atomic charges were cal-
culated using the restrained electrostatics potential (RESP)
method [19] based on electrostatic potentials (ESP) calculated
at the RHF/6-31G level using AMBER software packages
[20]. The topological properties and parameters were then
assigned based on CHARMM all-atom force field [21]. An
aggregated system of Brij 92 and Brij 96 as well as the mixture
of both surfactants was modeled on a three-dimensional (3D)
cubic lattice with linear size L=8 nm.

The fractions of each surfactant were calculated based on
our unpublished experimental data for specific regions of the
phase diagram where micelles are present. The concentrations
involved in this system were 20 %, 40 % and 80 %, with the
point chosen being placed in the isotropic regions of the phase
diagram. The number of molecules involved in this system
was calculated using weight-to-weight ratio. The percentage
ratio used for the specific surfactants in the system multiplied
by box sizes and the density of the surfactants was divided by
the molecular weight of the surfactants. The results obtained
gave the number of moles, which was then multiplied by the
Avogadro number to obtain the accurate number of molecules
used in the model systems for each specific surfactant. The
box sizes for each system involved were kept fixed in order to
produce different micelle shapes for the different composi-
tions of surfactants [22].

The lattice was then fully occupied by one of the two
species of surfactants and water molecules. The system was
made to evolve in time by applying insertion/deletion moves,
single chain displacements, and cluster displacements [23].
The chain insertions and deletions were performed using a
configuration-bias method that allows chain growth only into
unoccupied spaces as described in previous studies based on
non-ionic surfactant models [6]. In the single chain and coun-
terion displacement move, a chain is selected randomly and
displaced in a random direction. The chain of the surfactant
molecule was chosen randomly for a specific move. As a
result, a random number was obtained to determine whether
a chain underwent a local move or a reptation.

The initial configuration of the systemwas chosen random-
ly (as a high temperature system) and the total energy of this
configuration, E, was calculated. The new configuration was
obtained by the random movement of a chosen molecule. The
trial configuration was accepted based on the standard Me-
tropolis algorithm [24]. The Metropolis probability, P is given
by:

P ¼ min 1; exp −
ΔE

kBT

� �� �
ð1Þ

Where ΔE is the difference between the energies of the trial
and the old configurations, kB is the Boltzmann constant and T

is the absolute temperature. The procedure was continued
until equilibrium was attained. The optimum number of MC
steps generally depends on the temperature and the concen-
tration of the surfactant molecules. For our simulation, the
optimum number was selected as 5 × 106 MC steps with a
1,000 step size at a temperature T=300 K. The simulations
were repeated three times per samples for every condition in
order to validate the results obtained.

Results and discussion

Total energy

Monte Carlo simulation simply imposes random motions on
the system and determines whether the altered structure is
energetically feasible at the temperature simulated. The sys-
tems were samples based on conformation space without
realistic dynamic trajectory for which the time-dependent
quantities cannot be provided. The use of interaction energy
to investigate the micellization process has shown very prom-
ising results [25]. To describe a surfactant mixture, the
governing interaction energies must include the interspecies
interactions by treating the head unit for one surfactant species
as equally hydrophilic or hydrophobic to the head unit of the
other species. The total energy of all simulated mixed models
was calculated after 5 million MC steps with a step size of
1,000. The total energy was defined by the summation of
potential energy and kinetic energy. The molecules in the
model system were selected randomly, then displaced in a
random direction within the periodic box. The reptation move
was used to move the chain, and the chain end to be the lead
end for reptation was chosen randomly. The probability for the
moves was calculated according to the standard Metropolis
algorithm given by Eq. 1. The moves were accepted with the
probability based on the Metropolis prescription where the
potential energy changes caused by moving these particles
from their old location to the new location were computed
[16].

The ene rgy ch anged be tween −39 , 529 and
−99,039 kcal mol−1 as shown in Fig. 2. The average total
energy against MC steps during the simulation for each model
is summarized in Table 1. The exponential term in Eq. 1 is
greater than 1, which causes negative energy values where the
move is accepted with the probability of 1. The average total
energy for mixture A, consisting of six molecules of Brij 92
and five molecules of Brij 96, was −39,529 kcal mol−1. On the
other hand, for mixture B with 40 % of surfactants, the energy
was −57,899 kcal mol−1; and the last system (System C),
containing an 80 % mixture of Brij 92 and Brij 96, had an
energy value of −99,039 kcal mol−1, which was the lowest
energy produced. Interaction between the molecules requires a
high energy gesture to stabilize the mixed surfactant system in
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order to form amicelle. Hence, the lowest energy input needed
is during the mixed surfactants simulations that produce a
micelle easily. Thus, as the number of surfactant molecules
increased, the average energy per mole of the system also
increased, with surfactants being assigned repulsive values
between the head–tail and tail–solvent units of the molecules.

The energy of all hydrophilic–hydrophobic interactions
depended on the energy parameters employed, where the
complexity of the models varied from only one energy param-
eter to several energy parameters. We observed that the sur-
factant head–head interaction could safely be neglected when
modelling the process of micellization of non-ionic surfactants
[10]. The large discrepancies observed for the systems with
head–head repulsions could be attributed to the disregarding
of the correlation effect on interactions among surfactant
molecules and the nonrandom mixing effect in the theory
[12]. To describe a surfactant mixture, the governing interac-
tion energies must include interspecies interactions. This can
be accomplished by treating the head unit for one surfactant
species as equally hydrophilic (or hydrophobic) as the head
unit of the other species. Therefore, the results suggest that
surfactant molecules and water were mixed well in all simu-
lated models. An effective hydrophilic interaction between the
head and water molecules was obtained by ignoring the inter-
action between head–water, in contrast to tail–water

repulsions. This was done to stabilize the interaction energies
between the two different surfactant molecules and water.

Acceptance ratio

Acceptance ratio is the percentage of the move that has been
accepted or rejected in each simulation based on the moves
proposed [7]. Thus, the ratio can be controlled by the number
of surfactant molecules to be moved and the step size. In our
case, the use of a macromolecular systemwill result in a lower
ratio, which can be much smaller than 30 % of the time after
equilibrium is achieved [26]. In our study, the acceptance ratio
was applied with and without calculating the forces to bias the
displacements, with appropriate modification of the accep-
tance criterion depending strongly on the choice of move
chosen for the system involved. However, the composition
of the model system was also important in calculation of the
percentage [16].

Table 2 reports a summary of the number of molecules, the
compositions, and the acceptance ratio after 5 million MC
steps for our simulated models. The acceptance ratios for the
surfactant mixture were incorporated with single atommoves,
individual rotation of surfactant bonds, concerted rotation of
the main chain with the flexible surfactants bonds and auto-
matic optimization. The acceptance ratios for single atom

Fig. 2 Total energy for three
mixed systems at 300 K in 5
million Monte Carlo (MC) steps
with 1,000 differences in step
size. System A = 20 %, System B
= 40 %, System C = 80 %

Table 1 Summary of percentage of surfactants, number of molecules of each surfactant, and total energy after 5 million Monte Carlo (MC) steps for all
simulated models

Model prepared Percentage of surfactants (%) NB92 NB96 Total energy (kcal mol−1)

A 20 6 5 −39,529±15
B 40 12 10 −57,899±15
C 80 31 26 −99,039±14
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moves in the mixture of Brij 92 and Brij 96 were increased as
the composition of the mixture increased. The acceptance ratio
values were 0.494, 0.551, and 0.592 for 20%, 40%, and 80%
of surfactants in aqueous solutions. However, system B
showed the highest values of all the systems tested for indi-
vidual rotation of surfactants bonds, automatic optimization
and concerted rotation of the main chain with flexible surfac-
tants bonds, followed by system A and system C, which had
the lowest values.

Automatic optimization will happen only if the acceptance
ratio method probability (ARMP) > 0 and the dynamically
optimized MC factor (DOMCf) > 0 [7]. The lowest value for
this part was 0.443 (system C), whereas for system A had a
value of 0.455, and the value for system B, consisting of 40 %
of surfactant mixture, was highest at 0.464. The acceptance
ratio of individual rotational for the surfactant bond for a
system with 40 % (B) of surfactants achieved the highest
values of 0.389, whereas, system A (20 %) and C (80 %)
reached values of 0.352 and 0.357, respectively. The moves
involve movement of the bonds of each atom in the surfactant
molecules. For the concerted rotation of the main chain with
flexible surfactant, each additional pair of selections defines
non-rotatable bonds, where non-rotatable bonds are not
allowed as the third or fifth bonds. Systems A and C were
0.449 and 0.450, respectively, where system B had the highest
value of this ratio, 0.459. Here, we can conclude that system B
had the best acceptance ratio of the three systems tested.

The results observed may have been due to the higher
probability of overlap between the molecules to be accepted
between the molecules already present in the simulation cell.
Our results may also suggest that the acceptance rates are ideal
for these model surfactants and that surfactant molecules were
moved around the lattice sites. In principle, a sampling
scheme may be optimal for one quantity, but not for another.
For instance, consider the choice of the parameter that deter-
mines the size of the trial move. If it is very small, the change
in potential energy is probably small and most moves will be
accepted and vice versa. The optimum acceptance ratio is one
that leads to the most efficient sampling of configuration
space. Metropolis MC works best if the acceptance of trial
moves by each surfactant atom is accepted by the laws of

ARMP and DOMCf. Metropolis MC can be implemented
easily for mixtures and inhomogeneous systems, such as
fluids near interfaces [27].

Radial distribution function

The radial distribution function, g(r), gives the probability of
finding a particle at a distance r from another particle. In
general, for a micellized system, the radial distribution func-
tion displays a local maximum at the micellar contact radius
and a global minimum occurs at the distance of closest ap-
proach. The contact values can be slightly greater than 1 and
then decrease somewhat with increasing aggregation number.
The local minimum can be moved slightly away from the
micellar surface as the aggregation number increases. The
magnitude of the fluctuations indicates that a fixed number
of ions would provide a poor approximation to an open system
obeying the statistics of the grand canonical ensemble [28].

Figure 3 shows the behavior of the radial distribution
function for the mixed surfactants at a fixed density. For the
1st and 3rd systemmodel, the system became stable rapidly at
the beginning of the simulation, which might be due to the
value of the aggregation number. As the composition of the

Table 2 A summary of the number of molecules, compositions, and acceptance ratio after 5 million MC steps for all simulated models

System (Brij92+Brij96: water) A B C

Number of molecules 11:17227 22:16888 57:15860

Composition (w%) 20:80 40:60 80:20

Single atom moves 0.494 0.551 0.592

Individual rotational of the
surfactants bond

0.352 0.389 0.357

Automatic optimization 0.455 0.464 0.443

Concerted rotation of the main chain with flexible surfactants bonds 0.449 0.459 0.450

Fig. 3 Radial distribution functions, g(r), for three mixed systems. Black
System A, greenSystem B, redSystem C
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mixture approaches the equimolar point, the peaks of the
radial distribution function become less pronounced, although
there was still more clustering at the same state conditions
[29]. As the aggregation number increased, the local concen-
tration also increased and the maximum came closer to the
micellar surface. Because of the effect of increasing the sur-
factant tail length, the surfactant molecules used the adsorbed
micellar layer. In addition, the micellar layer around the mi-
celle became more prominent, and the micelle polar parts
became more depleted in the neighborhood of the micelle
[30].

Radius of gyration

The radius of gyration is the average distance between an
atom and its centre-of-mass at a given timestep. It is also used
to describe how much atoms move around during a dynamic
simulation. The resulting average Rg value can be used to
describe the size and compactness of the involved system
[31]. Table 3 shows the radius of gyration for a MC simulation
with three different compositions of surfactant molecules after
5 million MC steps. The radius of gyration of the systems
increased as the surfactant content increased, giving values of
16.8, 17.7 and 20.7, respectively, for model systems A, B and
C. This result can be explained by the radius of surfactants
needed to form the micelle. Thus, it can be concluded that the
surfactant tail density has a wider distribution than the surfac-
tant head density.

As the number of hydrophobic tail groups increases, the
ratio of the radius of gyration of the surfactant located at the
interface to the radius of gyration of the total surfactant
increases. Roughly speaking, as more solvophobic groups
are incorporated into the tail block of the surfactant, the
surfactant molecule becomes relatively more stretched at
the interface. In addition, the length and radius of gyration
of the tail groups are relatively longer than the head groups
at the interface. Therefore, when more surfactants pack at
the interface, there are no intersurfactant interactions driv-
ing configuration change [32]. As the number of molecules
in the system increases, the possibility of intermolecular
aggregation becomes favorable, since it entails the possi-
bility of maintaining the energy gain by contacts between
endgroups while offering an entropy increase due to the
possibilities of the chains to wander towards neighboring
molecules [33].

Solvent accessible surface area

The solvent accessible solvent area (SASA) is the surface area
of a biomolecule that is accessible to a solvent. SASA depends
on the area of the surface constructed by the center of a probe
rolling over a molecule in which the atoms are in a spherical
shape with various radii. The SASA is the boundary of the
atoms that have their radii increased by the probe radius—
typically 1.6 Å in the CHARMM program. The analytical
function can simply be extracted for the SASA of every solute
atom in CHARMM. Therefore, SASA obtained can be used to
calculate the SASA analytically, as well as the potential energy
of polar hydrogen, two atomic solvation parameters, and it also
involves relative solvent shielding effects for the charges.
SASA has shown great performance for solving the computa-
tional problems arising from the analytical calculation of sur-
face areas that depend on interatomic distances [16].

The accessible term is described as the atom, or group of
atoms brought together into a van der Waal’s contact by a
specific size of a solvent molecule. From the values recorded
(Table 4), system C had the highest accessible solvent area of
18,428.3 Å2 followed by system B with a value of 11,152.1
Å2, whereas the lowest value was shown by the first system
with a SASAvalue of 8,704.4 Å2. Therefore, system C shows
the highest SASAvalue, which means that more solvent were
attached here. Even though system A exhibits a smaller
amount of surfactants, the results for this particular composi-
tion are also acceptable because of the existence of van der
Waals forces between the solute and solvent. Hence, the
shielding effect does not depend on the environment, and it
will be more accurate where the maximum number of the
atoms is closer to, or located on, the surface. The accessibility
of the configurational space to the solute can be reduced by the
effect of the solvent, where in explicit solvent simulation the
dissociation between the solute configurational entropy and
solvent entropy is not genuine [34].

Shape of the micelle

Self-assembly of nonionic surfactants was simulated in the
presence of water at a constant temperature of 300 K in
various compositions as shown in Table 1. The total number
of MC steps was 5 million. In general, the micelles are
polydisperse and have a distribution of aggregation numbers.
Hence, it is convenient to represent the size of a micelle by
either number-average aggregation number or weight-average

Table 3 The radius of gyration
(Rg) for three selected models af-
ter 5 million MC steps

System Rg

A 16.83897

B 17.70100

C 20.68348

Table 4 The solvent ac-
cessible surface area
(SASA) for three select-
ed models after 5 million
MC steps

System SASA (Å2)

A 8,704.4

B 11,152.1

C 18,428.3
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aggregation number [35]. However, multiple surfactants are
often deliberately mixed to improve the performance charac-
teristics of surfactant formulations. The shape of mixed mi-
celles and the thermodynamic nature of the transition (geom-
etry of surfactants and temperature) vary with the characteris-
tics of the system [36]. The roles of surfactants are diverse
because the shapes and phase behavior of surfactants vary
depending on factors such as their molecular structure and
concentration. The shape accepted by the micelle is important
in determining its suitability in any reaction. The mobility of
the hydrocarbon chains gives indications of how species in-
side micelles diffuse through the interior [37].

As the content of mixed surfactants increased, the shape of
the system changed to be more spherical in shape. The aggre-
gation and disaggregation of molecules were observed
throughout the simulation. The results showed that the shape
of the aggregated structures can be affected by the composi-
tion ratio (see Fig. 4). The shape of aggregate surfactants can
be determined by calculating the principal moments of inertia
with respect to its center of mass: I1, I2, and I3. The average
shape of such an aggregate was characterized by averaging the
ratio of the largest and the medium moment of inertia (I1/I2)
and of the medium and smallest components (I2/I3). Here, the
shape ofmicelles was examined using the ratio of the principal
moments of inertia I1/I2 and I2/I3, with the condition that I1≤
I2≤I3. These ratios describe the shape of micelles in the
following manner: for spherical micelles, I1≈I2≈I3 and thus
I1/I2≈I2/I3≈1; for disk-like micelles I1≈I2≤I3 and so I1/I2≈1
and I2/I3≈0 [38].

From Table 5 above, the principal moment of inertia for all
simulated models differed slightly between the x-axis, y-axis
and z-axis. The principal moment of inertia of each system
was calculated using the average ratio between x-axis, y-axis
and y-axis, z-axis. The results shown are the average ratio for

all systems, I1/I2≈I2/I3≈1. Thus, the shape of all simulated
models resulted in spherical micelles that became bigger as the
percentage concentration of surfactants increased. Hence, it
can be concluded that the micelles mix indiscriminately, and
that the micelle size and shape also depend on the concentra-
tion ratio of the two species [37]. Figure 4 shows that model
system C produces a bigger micelle compared to the other two
model systems due to the 80 % surfactant content at a ratio of
0.3 and 0.45 of Brij 92 and Brij 96, respectively. Furthermore,
this model system was situated in the homogeneous phase of
the binary phase diagram while systems A and B were placed
in the isotropic region of the phase diagram (unpublished
data).

Conclusions

MetropolisMC simulations were carried out for three different
percentages of mixtures of nonionic Brij92 and Brij96 mole-
cules in aqueous solution. From these three systems, we
concluded that MC simulation can be used successfully in
the mixed surfactant model system in order to determine the

Fig. 4 Snapshot of the mixed
system after 5 million MC Steps.
GreyBrij 92, greenBrij 96

Table 5 Principal moment of inertia, and averaged over 5 million MC
steps of simulation

Model Moments of inertia (Ǻ) Average moment of inertia

x-axis (I1) y-axis (I2) z-axis (I3) I1/I2 I2/I3 I1/I2 : I2/I3

A 0.2641 0.2693 0.2940 0.981 0.916 1 : 1

B 0.5620 0.5680 0.5917 0.989 0.960 1 : 1

C 0.1115 0.1132 0.1310 0.984 0.865 1 : 1

J Mol Model (2014) 20:2512 Page 7 of 9, 2512



physical properties of the models, and also to choose the most
reliable system to be used as a surfactant mixture. The surfac-
tants weremixed well throughout the simulation and produced
reliable values for acceptance ratio, energy, and spherical
shape micelles. The optimal mixture will be mixed with palm
kernel oil esters to form nanoemulsions for future use. The
nonionic Brij molecules are usually used in nanoemulsion
formulations that can then be used as a potential drug carriers
for transdermal drug nanodelivery systems. The properties
estimated here using MC techniques provide a more detailed
insight into the self-assembly of these classes of surfactants.
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